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Abstract 

We present a multimodal multi-species multi-omics multi-tissue transformer for aging research and 

drug discovery capable of performing multiple tasks such as age prediction across species, target 

discovery, tissue, sex, and disease sample classification, drug sensitivity prediction, replication of 

omics response and prediction of biological and phenotypic response to compound treatment. This 

model combines textual, tabular, and knowledge graph-derived representations of biological 

experiments to provide insights into molecular-level biological processes. We demonstrate that 

P3GPT has developed an intuition for the interactions between compounds, pathologies, and gene 

regulation in the context of multiple species and tissues. In these areas, it outperforms existing LLMs 

and we highlight its utility in diverse case studies. P3GPT is a general model that may be used as a 

target identification tool, aging clock, digital laboratory, and scientific assistant. The model is 

intended as a community resource available open source as well as via a Discord server. 

Introduction 

Biology has long been a discipline with a high affinity for machine-learning techniques. The discovery 

of DNA structure and advances in sequencing technologies have allowed scientists to treat molecular 

data as texts and thus apply various string-based and graph algorithms to study the evolution and 

regulation of cellular processes. We have witnessed the emergence of an interdisciplinary research 

field founded on the assumptions that living systems can be described as mathematical abstractions 

and that their behavior can be accurately predicted with increasingly powerful compute. 

Another milestone occurred in the 1990s, when the scientific community achieved the feat of 

sequencing whole genomes. With the advent of shotgun-sequencing techniques, the rate of biodata 

generation increased dramatically, and online public repositories, such as the Gene Expression 
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Omnibus (GEO), were founded; these repositories remain the field’s most essential web resources 
1
. 

Open access to large amounts of data perfectly positioned scientists to contribute to the upcoming 

revolution in data science and resulted in the quick adoption of breakthrough approaches developed 

in other fields.  

The progress in machine-learning approaches culminated in the neural network boom of the 2010s. 

The variety of available architectures, combined with the inherent ability to capture nonlinear 

dependencies, secured neural networks’ position as the algorithms of choice for solving any tasks 

involving big data. In biomedical research, neural networks have been used to analyze imaging data, 

develop novel drugs, apply biological knowledge graphs (KGs), study aging processes, annotate 

genomes, predict protein structures, and even emulate living organisms. 

Compared to other machine-learning methods, neural networks demonstrate outstanding 

performance in these tasks, occasionally outperforming trained humans. However, these models 

have been trained to carry out highly specific tasks and thus can hardly be called artificial intelligence 

(AI). The high level of specialization achieved in these models also poses a significant challenge to 

their wider adoption, since their range of application may be limited to the various technicalities 

associated with sample collection, sample preparation, and—in many cases—data processing 

protocols, which are likely to introduce bias into the data produced. Effectively, data obtained 

through different means may represent entirely separate domains, resulting in a reproducibility crisis 
2
. 

Omics studies are particularly susceptible to this issue. Despite extensive research on normalization 

and harmonization methods, cross-platform data aggregation remains an unresolved challenge. As 

new platforms emerge and older ones are cycled out of production, the problem is further 

aggravated, as specialized AI models trained with a particular format in mind are rendered useless 

once that format is abandoned. 

One solution to the reproducibility crisis in biomedical research is organizational. It involves the 

formation of consortia to manage end-to-end data acquisition and preserve biospecimens for follow-

up measurements. Such long-lasting projects include NHANES, the UK Biobank, LINCS, the 

Framingham Heart Study, and other biobanks with a long history of meticulous data management 

procedures, which ensures research continuity.  

Another approach involves the development of more general AI systems that are resistant to 

technical biases and can operate at a sufficiently high level of abstraction to extract and combine 

knowledge from various sources. The transformer architecture developed by Google in 2017 rapidly 

became the industry standard for solving tasks characterized by high uncertainty and a lack of formal 

definition 
3
. Successfully leveraging the assumption that any problem and its answer can be 

expressed in natural language, generative pretrained transformers (GPTs) took the world by storm in 

2022 with the release of ChatGPT. Most recently, base models fine-tuned to specific research areas 

have seen considerable development. In the same year, BioGPT, which was pretrained on a corpus of 

15 million PubMed texts, was released. It was the first such technology able to effectively carry out 

relation extraction, classify scientific documents, and answer biomedical questions 
4
. Another 

notable instance is OpenBioLLM, released in 2024, which outperforms OpenAI’s GPT-4 in a number 

of benchmarks and can be used to parse clinically relevant information and answer biomedical 

questions 
5
. 

While these models have demonstrated stellar performance in conveying biomedical information 

and providing evidence-based answers, their functionality is greatly constrained by the limitations of 
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the type of textual data used. The information made available to these GPT-based models is limited 

to the highly distilled research output seen in academic publications. Meanwhile, the original data on 

which these research projects are based remain hidden from the model, regardless of any 

unextracted knowledge remaining in the data. Arguably, specialized large language models (LLMs) 

suffer from a self-imposed handicap and lack the ability to provide novel hypotheses not yet stated 

or implied in the literature
6
. 

In this article, we present Precious3-GPT (P3GPT), a new type of biomedical LLM trained on 

multimodal data consisting of PubMed publications, KGs, and—most importantly—tabular data 

representing unadulterated research information yet to be interpreted (Figure 1). By enabling it with 

multimodal capabilities, we have ensured that it can learn from a much wider range of resources 

than other LLMs. P3GPT has learned to reproduce the raw output of research experiments and can 

thus operate at a lower level than other biomedical LLMs. Its native output format is expressed in 

terms of genes and chemical compounds, effectively making P3GPT a digital lab suitable for various 

in vivo, in vitro, or clinical experiments. We showcase P3GPT’s abilities in a range of aging-related, 

biomedical entity classification, and omics domain tasks. 

The range of research settings it supports and its efficient learning rate make P3GPT a unique model 

that holds the potential to become a centerpiece of a fully-automated, AI-managed research 

laboratory. With the help of autonomous AI agent frameworks, LLMs can carry out functions beyond 

text generation and parsing to plan experiments, interpret data, modify existing scripts to support 

new packages and data formats, and basically support any research task provided the tools (Figure 

2). As an LLM, P3GPT is ready to be implemented as such a tool, which we demonstrate by using its 

output in a real-life in vitro experiment aimed at identifying novel geroprotectors. 

  

Figure 1.  P3GPT features a novel architecture enabling efficient omics-data training and multi-

modal extensions.  

Omics tabular observations are transformed into structured input prompts to train the transformer 

block. Additional modalities (text and knowledge graph) are embedded through modality mapper 

units as extensions to the frozen transformer block. See more in Methods.  
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Figure 2. P3GPT’s ability to operate with omics data enables it to serve as a hypothesis engine in an 

autonomous multi-agent system tasked with conducting biomedical research. 

Autonomous agents (left column) may use web services (center) as tools to carry out the functions 

typical for a biomedical research group. In such a collective of AI agents, P3GPT serves as a fast and 

affordable way to screen compounds or run omics experiments to generate hypotheses, e.g. “maslinic 

acid is a promising senolytic”. Other agents act on this hypothesis preparing a lab protocol and 

scheduling in vitro validation. Its results are shared with agents who can digest the findings in natural 

language for a human-assisted review. After the review, the results are integrated into the ever-

growing database to be used for P3GPT fine-tuning. Finally, P3GPT is ready to generate new 

hypotheses, thus closing the loop. 
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Results 

Data collection and training 

To ensure that P3GPT developed an understanding of the interconnectedness of biological entities in 

the context of omics, we aggregated high-level, uninterpreted data from various omics experiments 

involving gene expression, DNA methylation, and proteomics. After applying extensive quality control 

procedures (see Methods), our data amounted to over 1.2 million observations featuring 63,376 

biological entities (Tables 1–2). This data collection represents a wide range of experimental settings, 

such as cross-sectional human studies, murine case-control, and in vitro chemical intervention 

studies.  

In our dataset, 18,224 human samples are annotated with age metadata and represent all age 

groups, including embryos and supercentenarians (Figure 3A). Similarly, our dataset contains 23,024 

murine and 1,124 simian samples with known chronological age. The most represented tissues in our 

aggregate dataset include breast, prostate, lung, kidney, and skin, which together account for 

>380,000 observations (Figure 3B).  

Omics tabular data were transformed into structured input prompts containing the lists of the most 

and least abundant omics features, metavariable. The prompts were then supplemented with 

instructions to denote the experimental context and submitted to training the transformer block 

(TB). The training continued for 566,000 steps with 48 samples per step, at which point the cross-

entropy loss function plateaued (Figure 3C).  

 

Table 1. P3GPT can interpret >60,000 biochemical entities, such as genes, compounds, and tissues.  

Biological Entity N entities Entity Examples 

Gene 25,332 ISG15, CXCL2 

Compound 22,241 BRD-K32665240, Floxuridin 

Pathway 13,439 GOBP: Recognition of apoptotic cell 

Mechanism of action 661 Renin Inhibitor 

Condition 635 MONDO:0017396, EFO:0000305 

Age & Age groups 394 21, 30-40 

Tissue 300 Heart, Joint 

Cell Line 269 HT-29, IMR90 

Dose 76 0.12uM, 200uM 

Time of exposure 15 96h, 8d 

Data Type 9 Proteomics, RNAseq 

Species 3 Homo sapiens 

Gender 2 Male, Female 

Overview of biological entities that P3GPT can interpret in the context of omics experiments. The 

model treats each entity as a distinct token that provides the context for an experiment or is 

generated through inference. The model also features 74 utility tokens that serve as tags and 

instructions. 
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Table 2. P3GPT was trained on a collection of 1.2 mln omics samples.  

Sp. Dataset Setting Data type N samples 
N tokens 

(in millions) 
Metadata 

H
o
m
o
 s
a
p
ie
n
s 

GTEX 
RNAseq from 54 non-diseased 

tissues and ~1000 individuals 
Expression 17,382 9.5 Age, gender, tissue 

ARCHS4 7 
A uniformly processed aggregation 

of GEO experiments 
Expression 32,313 21.5 Age, gender, tissue, health status 

LINCS 
8
 

RNAseq data of chemical and 

genetic perturbations in human cell 

lines 

Expression 948,654 545.48 

Cell line, perturbagen (compound or gene 

knockout/knockdown), exposure duration, 

concentration 

HERB 9 
GEO RNAseq studies on traditional 

Chinese medicine 
Expression 523 0.301 

Tissue or cell line, compound, exposure duration, 

concentration 

PandaOmics 10 

Uniformly processed RNAseq and 

array GEO experiments and 

ProteomeExchange data 

Expression 3,172 1.824 

Age, gender, tissue, health status DNAm 275 0.16 

Proteomics 54 0.03 

CNCB 
Uniformly processed Illumina 

Infinium GEO experiments 
DNAm 882 0.51 Age, tissue, gender 

Proteomics Drug 

Atlas 2023 11 
Whole blood SOMAscan 4.1 panels Proteomics 874 0.5 Age, gender, tissue, health status 

UK Biobank Plasma OLINK Explore 3072 panels Proteomics 56 0.03 Age, gender, tissue 

Pathways 
CP: Canonical pathways 

GO: Gene Ontology gene sets 
 13,439 7.1 Pathway name, gene list 

Clinical Blood 

Tests 
NHANES-IV by CDC, 12 Blood tests 111,993 17.47 Age, gender, diagnosis 

M
u
s 

m
u
sc
u
lu
s ARCHS47 

A uniformly processed aggregation 

of RNAseq GEO studies 
Expression 11,592 6.7 Age, gender, tissue 

HERB9 
GEO RNAseq studies on traditional 

Chinese medicine 
Expression 424 0.25 

Tissue or cell line, compound, exposure duration, 

concentration 

M
a
c
a
c
a
 

m
u
la
tt
a
 

GEO See Methods Expression 1,124 0.65 Age, gender, tissue 
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The data was collected from publicly available resources featuring experiments with transcriptomic, epigenetic, or proteomic profiles, such as GEO, LINCS 

and others. We also expanded the training set with gene lists organized in ontologies, such as Gene Ontology (GO), and clinical blood tests from NHANES to 

enable more use cases in the future 
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In addition to tabular omics data, the training set included text and KG data, represented by GenePT-

derived embeddings and heterogeneous graph transformer embeddings of 25,332 genes. After the 

omics training stage, TB’s weights were frozen and modality mapper (MM) units were trained to 

extend the learned prompt embeddings. The MM training continued for 2,350 steps with 24 samples 

per step until the loss function reached a plateau. 

The full list of settings used in training P3GPT is described in Methods, and P3GPT’s architecture is 

shown in Figure 1. 

Gene list generation 

One of the research settings P3GPT is trained to replicate is a chemical screening with omics 

measurements. To illustrate P3GPT’s competence in this core task, we employed P3GPT to generate 

lists of differentially expressed genes (DEGs) for a holdout set of compound screening experiments.  

The holdout set featured 805 observations of chemically induced expression perturbations across 

582 compounds and 102 cell lines. P3GPT was instructed to return DEG lists of the same length as in 

the original data: 100 or 250 items long. The Jaccard similarity between the P3GPT-produced and the 

original DEGs was 0.0387 for downregulated genes and 0.0447 for upregulated genes—values that 

are 3.49–3.98 times higher than those achieved by random lists and 2.92–3.06 times higher than 

those of GPT4o-generated DEGs (Jaccard similarity = 0.0132–0.0146, Figure 3D). 

Despite a substantial difference in the number of parameters and the scale of the training set, P3GPT 

outperforms GPT4o in the task of predicting the response to a chemical perturbation. We see this as 

proof of P3GPT’s multimodal architecture superiority in the context of omics-level research, 

compared to text-trained models. 

P3GPT entities are associated with biological processes 

If P3GPT may produce biologically relevant data, we may also expect its embeddings to represent 

experimentally validated annotations in terms of protein localization and metabolic pathway 

engagement. To test this hypothesis, we extracted P3GPT’s embeddings for all 25,332 human genes it 

could interpret to train binary classifiers for 18 high-level Gene Ontology (GO) terms randomly 

selected among those containing >100 genes. 

The derived classifiers proved to be efficient (ROC-AUC � [0.743–0.877]) in annotating all three 

aspects of genes as defined in GO: molecular functions, biological processes, and cellular 

components.  

Using the agent-based validation pipeline, we then replicated the same workflow with four other 

LLMs designed specifically to solve biomedical problems, including BioGPT and OpenBioLLM (Table 

3). By comparing the results for this array of LLMs, we concluded that the P3GPT-derived 

representations are the most descriptive of the genes’ involvement in biological processes and 

protein localization. Thus, it is expected to be a more reliable tool than text-trained biomedical LLMs 

for the purposes of target identification and drug discovery, both settings that require careful 

consideration of how proteins and compounds interact with each other to affect regulatory 

pathways.
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Table 3. P3GPT outperforms much larger LLMs in the task of annotating genes with their biological function and cell localization. 

Onto-

logy 
Term GO ID 

Support, 

N genes 

ROC-AUC ± Std. 

P3GPT 
OpenBioLLM-

8B 
BioGPT-

Large 
Gemma-2B Llama3-8B 

M
o
le
c
u
la
r 
fu
n
c
ti
o
n
 

G protein-coupled receptor 

activity 
GO:0004930 746 0.877±0.013 0.953±0.011 0.961±0.012 0.962±0.010 0.956±0.010 

Protein kinase activity GO:0004672 576 0.837±0.016 0.879±0.010 0.895±0.015 0.890±0.021 0.885±0.010 

Transporter activity GO:0005215 1216 0.808±0.012 0.922±0.007 0.922±0.011 0.930±0.010 0.925±0.007 

Transcription regulator 

activity 
GO:0140110 1872 0.817±0.008 0.855±0.015 0.865±0.012 0.887±0.013 0.862±0.014 

Structural molecule activity GO:0005198 674 0.815±0.008 0.848±0.026 0.855±0.011 0.851±0.023 0.857±0.024 

Translation regulator activity GO:0045182 364 0.868±0.017 0.938±0.014 0.912±0.011 0.939±0.008 0.941±0.015 

Average 0.8370 0.8992 0.9017 0.9099 0.9043 

B
io
lo
g
ic
a
l 
p
ro
c
e
ss
 Immune system process GO:0002376 1591 0.829±0.011 0.714±0.011 0.711±0.021 0.743±0.010 0.727±0.010 

Metabolic process GO:0008152 7242 0.783±0.006 0.790±0.006 0.802±0.007 0.805±0.004 0.799±0.006 

Cell cycle GO:0007049 486 0.761±0.012 0.714±0.026 0.678±0.022 0.697±0.037 0.720±0.025 

Cell division GO:0051301 400 0.819±0.004 0.749±0.029 0.728±0.045 0.740±0.036 0.752±0.029 

Chromosome segregation GO:0007059 111 0.797±0.011 0.779±0.052 0.748±0.036 0.726±0.056 0.780±0.054 

Transmembrane transport GO:0055085 1136 0.803±0.012 0.913±0.012 0.894±0.017 0.914±0.013 0.915±0.012 

Average  0.7985 0.7764 0.7600 0.7709 0.7824 

C
e
ll
u
la
r 
c
o
m
p
o
n
e
n
t Cytosol GO:0005829 5276 0.770±0.007 0.735±0.006 0.748±0.010 0.761±0.008 0.743±0.006 

Plasma membrane GO:0005886 4770 0.768±0.008 0.781±0.007 0.785±0.007 0.800±0.004 0.786±0.007 

Organelle membrane GO:0031090 3354 0.768±0.004 0.748±0.005 0.736±0.013 0.769±0.006 0.752±0.005 

Nucleoplasm GO:0005654 3792 0.820±0.004 0.724±0.012 0.738±0.008 0.740±0.012 0.729±0.013 

Mitochondrion GO:0005739 1309 0.811±0.010 0.726±0.017 0.701±0.022 0.717±0.014 0.730±0.016 

Endoplasmic reticulum GO:0005783 1119 0.743±0.004 0.677±0.022 0.673±0.013 0.701±0.018 0.682±0.022 

Average 0.7799 0.7320 0.7303 0.7480 0.7371 

Total Average 0.8052 0.8025 0.7973 0.8096 0.8079 

Performance of Gene Ontology (GO) term classifiers trained on embeddings extracted from various LLMs. The P3GPT-based classifiers exhibited superior 

performance with 8 out of 18 high-level GO terms but underperformed in classifying the genes’ molecular functions.  

ROC-AUC — area under the receiver operating curve; Std — standard deviation. The background set consisted of 22,509 human genes. The green and red 

highlights denote the best- and worst-performing classifiers for each term 
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Figure 3. P3GPT was trained on data from multiple species, tissues, and age groups to simulate 

settings such as aging studies and chemical screenings.   

(A) P3GPT was trained on data from all age groups in both humans (left) and mice (right), spanning 

embryos and old individuals.   

(B) P3GPT’s training set features a wide selection of tissues to grant it tissue-context capability. 

(C) P3GPT’s TB learning curve demonstrates an efficient convergence of the training process. The 

training was arrested to add KG and text modalities at 566k steps, when the loss stopped decreasing. 

One step constitutes 12 samples, processed with 4 GPUs. 

(D) P3GPT outperforms ChatGPT-4o in the task of predicting the effect of a compound on a cell line in 

a subset of 805 LINCS entries not used in training. The Jaccard similarity of the P3GPT-generated 

perturbation signatures is 3–4 times higher than that of the GPT4o-generated signatures. *** — 

Mann–Whitney U-test P-value < 0.001 

(E)  P3GPT can be used to train an aging clock using the averaged embeddings of the most 

methylated gene promoters. The P3GPT-based predictor outperformed Horvath’s aging clock on a 

validation set of 2,824 human blood DNAm samples. 

(F)  The P3GPT-derived aging clock offers a unique perspective on aging. Predictions of a P3GPT-

based aging clock show high correlation with those of a multi-tissue Horvath’s 2013 clock but weaker 

correlations with blood-based DNAm aging clocks. Horvath’s 2013 clock R
2
=0.54; P3GPT-based clock 

R
2
=0.90. 
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P3GPT-derived aging clocks 

To illustrate the utility of P3GPT in aging research, we tested it as an age predictor trained on a 

collection of 10,750 blood samples from public DNAm profiling GEO experiments. To build the clock, 

we first averaged P3GPT embeddings of the 50 most methylated genes for each sample to obtain 360 

dimensions-long vectors. Then we stacked the embeddings with a matrix of average ß-values on the 

promoters of 360 genes selected as the features with the highest SHAP importance scores in a 

CatBoost model trained on the ß-values of all 25,332 genes. 

The stacked P3GPT embeddings and ß-values were then used to train a CatBoost predictor of 

chronological age, which we tested in a validation set of 2,824 samples. The resulting aging clock 

displayed a mean absolute error of 4.78 years and R
2
=0.90 (Figure 3E). Additionally, we applied SHAP 

value feature importance analysis to assess the degree of P3GPT’s embeddings to the accuracy of the 

predictor. The cumulative importance of the P3GPT features accounted for 12.2% of total 

importance. We thus show that P3GPT-derived features have proven to be a measurable source of 

additional aging-related information that can improve the performance of an aging clock. In other 

words, P3GPT has successfully internalized the connection between gene methylation levels and 

aging, which can be exploited in applications building on top of P3GPT. 

To frame our P3GPT-based clock in the context of other aging clocks, we utilized the predictions for 

our validation set from the ClockBase platform 
13,14

. We then inspected the correlations between all 

pairs of six commonly used aging clocks and our model’s predictions. The P3GPT-based clock was 

highly concordant only with the Horvath’s 2013 clock (Pearson’s r = 0.81), which is a multi-tissue 

biomarker. It showed lower correlations coefficients with blood-based clocks (Hannum 15, GrimAge 16, 

PhenoAge 17, Lin 18) as well as with the biomarker (DunedinPACE 19) that assesses the rate of aging, 

which is also based on blood (Figure 3F). Thus, P3GPT can derive reliable multi-tissue biomarkers of 

chronological age.   

We also instructed the in-house multi-agent system to apply a similar methodology to train a pan-

mammalian DNAm aging clock using the GEO dataset featuring DNAm samples from 348 species 20 . 

To enable compatibility with P3GPT, the CpG sites in unseen mammalian species were mapped onto 

human homologs, and a regressor was trained to predict the chronological age in each animal. The 

accuracy of the predictor ensemble was marked by a 10.06% mean absolute percentage error 

(MAPE), an R2 value of 0.68, and a Pearson’s r value of 0.83 in a test set of 1,406 multi-species multi-

tissue samples (Figure 4A). Thus, P3GPT showed its potential utility in studying aging not only in 

humans, but across the mammalian phylum in general. 

P3GPT-derived geroprotectors 

To assess P3GPT’s practical utility, we used it as a hypothesis generator in an in vitro anti-aging 

experiment. To obtain a list of potential geroprotectors from P3GPT, we sequentially executed it with 

two instructions. First, we applied the <age2diff> instruction to obtain expression signatures 

differentiating younger (20 years) and older (80 years) adults. Second, we applied the <diff2cpd> 

instruction to generate the compounds expected to reverse the signature identified in the first step 

in IMR90 cells. Upon manual curation to exclude toxic and commercially unavailable compounds, the 

22 molecules listed in Table 4 were selected for screening in an in vitro senescence model (see 

Methods).  

The selected compounds were tested in 1-4 concentrations (10 nM-20 uM) to assess their ability to 

reduce the number of ß-galactosidase (ßGal)-positive IMR90 cells subjected to sißPIX-induced 

senescence. To affirm the validity of the used model, we used two control compounds. Rapamycin 
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was selected as a positive control of senomorphic activity — a lower senescent cell portion in 

compound-treated sißPIX cultures, compared to untreated sißPIX cultures. Navitoclax (ABT-263) was 

selected as a positive control of senolytic activity — a lower cell survival rate in compound-treated 

sißPIX cultures, compared to compound-treated non-senescent cultures.  

Among the 22 screened compounds, 5 showed a significant (p-value < 0.05) senomorphic potential, 

resulting in a hit rate of 23% (Table 5). Compared to the reference senomorphic (50 nM rapamycin), 

the candidate geroprotectors identified are less potent, with only 3 compounds reducing the number 

of ßGal cells by > 5%: maslinic acid (20 uM), estradiol cypionate (10 uM), and dapsone (20 uM). Two 

more compounds can be added by applying a more relaxed p-value threshold (= 0.10): MRS-1754 

and clomethiazole. The list of potential geroprotectors can be further extended to 8 entries if 

cytotoxic compounds, such as XL-888, are considered (Figure 4B). 

This experiment confirms P3GPT’s ability to serve as a biomedical hypothesis generator, realistically 

simulate the aging process, and propose novel potential geroprotectors, whose effects are validated 

in vitro with a high success rate.  

Multimodal target enrichment 

P3GPT was trained on biodata modalities representing different levels of regulation, including gene 

expression, DNA methylation, protein levels and protein interactions. To validate that the model 

successfully internalized entity relations across all omics levels, we implemented the following target 

identification test. First, we prepared a collection of 24 diseases that affect different tissues and 

instructed P3GPT to generate differentially methylated, expressed, and translated genes. The 

conditions in this experiment were selected based on a large number of known target genes (>10) 

and a sufficiently large representation of the affected tissue in the training set (see Methods). 

We then counted the number of actual clinical target genes in the 300 likeliest output tokens in each 

indication–modality combination. We identified 15 indications whose output tokens were 

significantly (P-value < 0.05) enriched for real targets for differential expression, among which 7 were 

enriched for clinical targets in all three omics modalities (Figure 4C). 

This experiment demonstrates that the proteomic, epigenetic, and transcriptomic modes of P3GPT 

execution act in concordance with each other, and the model has succeeded in combining multiple 

experimental representations of a pathology into a single entity that can be simulated with enough 

precision to carry out target identification tasks. 
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Table 4. P3GPT identified 22 compounds as potential geroprotectors that were examined in IMR90 

cells. 

Compound CHEMBL ID Concentrations tested Known indications 

BI-2536 CHEMBL513909 10 uM Neoplasms (phase-2) 

Bisindolylmaleimide-IX CHEMBL6291 10 uM Leukemia (phase-2) 21 

Bortezomib CHEMBL325041 20nM, 100nM, 1uM, 10uM, 20uM 
Mantle cell lymphoma, 

multiple myeloma 

Celastrol CHEMBL301982 10uM 
Neoplasms (preclinical), CVD 

(preclinical) 22–24 

Clomethiazole CHEMBL315795 20nM, 100nM, 1uM, 10 uM Sedative 

CYT-997 (Lexibulin) CHEMBL552212 10uM Multiple myeloma (phase-2) 

Dapsone CHEMBL1043 20nM, 100nM, 1uM, 10uM, 20uM Acne, leprosy 

Estradiol cypionate CHEMBL1200973 20nM, 100nM, 1uM, 10 uM HRT in menopause 

GMX-1778 CHEMBL17289 10 uM, 20uM Neoplasms (phase-1) 

Indisulam CHEMBL77517 1 uM Neoplasms (phase-2) 

Ixazomib CHEMBL2141296 10 uM Neoplasms 

Lucitanib CHEMBL2220486 20nM, 100nM, 1uM, 10 uM Neoplasms (phase-2) 

Maslinic acid CHEMBL201515 10 uM, 20uM NA 

Metronidazole CHEMBL137 20nM, 100nM, 1uM, 10 uM Infections, pneumonia 

MRS-1754 CHEMBL273807 20nM, 100nM, 1uM, 10 uM CVD 25 

NVP-AUY922 

(Luminespib) 
CHEMBL252164 10uM Neoplasms (phase-2) 

Obatoclax CHEMBL408194 10uM Neoplasms (phase-3) 

Pidotimod CHEMBL1488165 20nM, 100nM, 1uM, 10 uM 
Asthma and other 

respiratory diseases 
26,27

 

Sonidegib CHEMBL2105737 10uM, 20uM Basal cell carcinoma 

TP-0903 CHEMBL2022968 10uM Neoplasms (phase-2) 

Triptolide CHEMBL463763 10uM 
Polycystic kidney disease 

(phase-3) 

XL-888 CHEMBL4297451 20nM, 100nM, 1uM, 10uM Skin cancer (phase-1) 

Rapamycin CHEMBL413 50nM Known senomorphic 

Navitoclax (ABT-263) CHEMBL443684 1uM Known senolytic 

A total of 54 dilutions of 22 unique molecules were assessed in a ßPIX-siRNA senescence model with 

ßGal staining as a senescence marker. 

CVD — cardiovascular disease, HRT — hormone replacement therapy. 
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Table 5. P3GPT achieved a 23% hit rate in the task of identifying non-toxic geroprotectors for a 

custom setting. 

Compound 
Selected 

concentration 

Senolytic 

action, % 

Senomorphic 

action, % 

Cytotoxicity, 

% 

Clomethiazole 100 nM NS -2.53 ** NS 

Dapsone 20 uM >0* -5.01 ** NS 

Estradiol cypionate 10 uM NS -5.20 ** NS 

Maslinic acid 20 uM NS -5.66 ** >0** 

Metronidazole 1 uM -9.4 * -3.14 ** >0** 

MRS-1754 100 nM >0* -5.41 ** >0** 

Pidotimod 10 uM NS -3.09 ** >0** 

XL-888 20 nM -21.26 * >0** -62.3 * 

Rapamycin 50 nM >0* -10.31 ** NS 

Navitoclax (ABT-263) 1 uM -98.4 * -12.10 ** NS 

In total, eight compounds proposed by P3GPT and included in the screening exhibited potential 

senolytic or senomorphic activity activity. For five compounds out 22 considered, no cytotoxicity 

towards non-senescent cells was detected.  

Senolytic action is defined as the change in cell survival between compound-treated senescent and 

non-senescent cultures. Senomorphic action is defined as the change in ßGal+ cells between 

compound-treated and untreated senescent cultures. Cytotoxicity is defined as the change in cell 

survival between compound-treated and untreated non-senescent cultures. (see Methods) 

NS — not significant (P-value > 0.10), * — P-value ≤ 0.10; ** — P-value < 0.05. All dilutions were 

observed in three replicates. Rapamycin and navitoclax were used as the reference senomorphic and 

senolytic compounds, respectively. 
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Figure 4. P3GPT shows unique capabilities, such as age prediction in unseen species, discovery of 

novel geroprotectors, and cross-omics target discovery. 

(A) P3GPT’s gene embeddings can be used to train a pan-mammalian aging clock, even in species not 

encountered in training. A chronological age regressor was trained for each species using stacked 

embeddings of the top 500 hypermethylated human homologs. The ensemble shows R
2 

= 0.68 across 

all subsets. 

(B) XL-888 is a potential senolytic, as identified by P3GPT. It shows selective cytotoxicity to senescent 

cells in an IMR-90 sißPIX induced senescence model with a more pronounced senolytic effect in low 

nanomolar concentrations. 

(C) P3GPT can reliably detect clinical targets with any of its omics modalities. Clinical targets for 15 

out of 24 diseases were present in P3GPT generations with corresponding experimental conditions. 

Furthermore, the target genes for 7 indications appeared in all three available generation modalities: 

proteomic, transcriptomic, and methylomic.  
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Discussion 

In this article, we demonstrate a novel approach to training domain-specialized language models. We 

have illustrated its benefits in a range of research problems, ranging from age prediction to chemical 

screening, with a demonstration of its utility in a real-life research project.  

P3GPT shares its architecture with the open-sourced MosaicML platform, MPT, which is similar to 

LLaMA but is optimized for training and inference with linear biases instead of positional embeddings 
28,29

. Another technical solution that has led to P3GPT’s superior performance relates to omics data 

formatting and preprocessing. 

In Geneformer, authors show that omics samples can be represented as sorted gene lists with no 

accompanying numerical values 30. We have elaborated on this concept by providing up- and down-

regulated gene lists to enable a platform-agnostic and structured training process. By reducing the 

omics observations down to the lists of genes, data generated using practically any platform can be 

integrated into the framework  30. To ensure proper entity segregation, the omics observations 

reduced in this way were accompanied by metavariables (subject species, sex, tissue, etc.) flanked 

with tags (Figure 5A). This prompt format has proven to be quite useful in cross-source 

harmonization, since tagged fields with explicitly empty values can be imputed during inference to 

restore the unseen conditions of an experiment. The final aspect of the prompt structure is the 

instructions added to inform P3GPT of the investigators’ intent. Each instruction represents an 

experimental setting, such as chemical screening (<compound2diff>), case-control cross-sectional 

studies (<disease2diff>), and pace-of-aging studies (<age_group2diff>). This information aids P3GPT 

in deriving the causality inherent in the research process and offers a convenient way to control 

model behavior. 

The appropriately selected model architecture in tandem with our specialized omics data 

representation results in a more efficient training process requiring fewer steps to achieve domain-

specific performance on par with much larger models.  

Other biomedical LLMs trained on corpora of natural texts (BioBert, BioGPT, and OpenBioLLM) do 

not require such structured input yet still show great performance in text mining, named entity 

recognition, and relation extraction tasks 4,31,32. However, these models have a range of constraints 

that interfere with their adoption in research settings. Their inability to learn from multimodal data 

significantly limits the scope of the sources from which they can learn. 

P3GPT avoids this pitfall thanks to multistep training that combines gene expression, DNA 

methylation, and proteomic studies with textual and KG data. This synthesis allows a broader view of 

biological processes, ultimately leading to better insights. Altogether, P3GPT’s design not only 

improves the model’s ability to understand and predict complex biological phenomena but also sets 

a new standard for integrating multi-omics data into LLMs.  
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Figure 5. P3GPT uses a rigid prompt structure to formalize research settings and communicate with 

the user. 

(A) The prompt structure used by P3GPT. All possible dimensions of the tabular omics data are 

included in the prompt, including subject metadata. In the case of missing features, explicitly empty 

values are added flanked by corresponding tags (here marked as “UNKNOWN”). The prompt is 

supplemented with an instruction to inform P3GPT on which empty values to return based on the 

experimental setting. In this example, an operator uses the <diff2cpd> instruction to receive 

compounds that can result in the over- and under-expression of the genes included in the prompt 

with the <up> and <down> tags, correspondingly; 

(B) P3GPT can be used to generate novel geroprotectors. To achieve this, the model first needs to be 

instructed to generate the omics signatures differentiating older and younger individuals by applying 

the <age2diff> instruction to a prompt with the specified context. Then, the produced gene lists need 

to be supplied as input to P3GPT instructed to generate the compounds mimicking the reverse aging 

signature. Note that only age groups and gene lists are modified in the prompts throughout the 

workflow. Other prompt fields, such as the species, tissues, or omics type may be set to reflect a 

specific experimental setting.  
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We have demonstrated the benefits of the selected methodology in a wide range of biomedical 

tasks, such as age prediction, DEG prediction, target identification, and—most importantly—

assessing the effects of compounds on cell lines. Surprisingly, P3GPT exhibits state-of-the-art 

performance in some of these tasks when compared to much larger models. Featuring only 89 mln 

parameters, it is measurably superior to BioGPT-Large and OpenBioLLM-8B in tests involving 

biological function and cell localization gene annotations (Table 3). We view these results as an 

indication of the successful contextualization of biological entities within their experimental contexts. 

Conversely, P3GPT-derived embeddings contain less information on protein molecular function than 

other models do. Nonetheless, all P3GPT-based molecular function classifiers boast a ROC-AUC > 

0.80, signaling the model’s adequate representation of the biochemical aspect of protein function. 

We also argue that the chosen GO benchmark is a useful tool for assessing any LLM’s area of unique 

expertise and highlighting the range of problems to which it is applicable. In this work we only 

demonstrate P3GPT’s performance on a small subset of all available GO terms, although for future 

iterations, this benchmark should be extended to all available GO terms to provide a broader 

overview of a model’s capabilities. 

Similarly, we have demonstrated P3GPT’s applicability in aging research by constructing a set of 

DNAm aging clocks that may be used in multi-species and multi-tissue settings. In the pan-

mammalian clock experiment, we used the same dataset as in 
33

, which reports a clock with a 

Pearson’s r value of 0.96 in leave-one-species-out validation. The P3GPT-derived DNAm clock 

achieved a Pearson’s r value of 0.83 in the same dataset with a less robust single-species-single-clock 

training procedure. A direct comparison of these clocks is thus not feasible since the original pan-

mammalian clock used ß-values on specific CpG sites as features that do not align with P3GPT’s 

prompt structure. However, this experiment allowed us to show that P3GPT’s embeddings contain 

aging-related information that can be applied to homologous entities in unseen species, thus 

implying the universality of aging mechanisms. 

Moreover, we showed that P3GPT’s embeddings. This suggests that P3GPT’s multimodal approach to 

integrating omics data, text, and KGs offers certain benefits in tasks that require generalization across 

species, tissues, and omics domains. 

We have also demonstrated the model’s ability to build a multi-domain view of biological 

phenomena as a target identification task (Figure 4C). Assuming that P3GPT has internalized the 

biological processes associated with a disease, we would expect to observe an abundance of 

clinically verified targets in P3GPT’s output for the <disease2diff> instruction. However, P3GPT’s 

output varies even if the user-defined conditions are fixed, which necessitates the generation of 

thousands of gene lists to meaningfully sample all the genes that may be differentially regulated in a 

disease. Thus, we chose to use the tokens’ output probabilities as a measure of the model-assigned 

importance of a gene to reduce the number of P3GPT calls to one per prompt. In total, we generated 

72 sets of gene importance scores, divided across 24 diseases and 3 omics domains. 

For 15 out of 24 conditions, the model successfully included clinically relevant targets among the 300 

most important genes for at least one omics domain (Figure 4C). In 7 out of 24 cases, the most 

important genes were significantly enriched in clinical targets in every domain. We hypothesize that 

P3GPT may be well suited to driving novel target discovery under these conditions, or, more 

specifically, for melanoma, follicular lymphoma, chronic obstructive pulmonary disease, chronic 

kidney disease, and breast, pancreatic, and liver cancers (Table S1). Interestingly, P3GPT picks up 

different targets depending on the omics dimension specified in the prompt. We see this as an 

indication that P3GPT has successfully convoluted cross-modal representations of a pathology into a 

single process, thereby gaining the ability to discriminate between the different levels of regulation: 
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epigenetic, transcriptional, and proteomic. We also hypothesize that the extracted lists of the most 

important genes may contain yet unknown targets and should be further investigated to assess the 

clinical potential of these potential targets.  

For some indications, however, P3GPT fails to identify target genes as important at any level of 

regulation. We attribute such cases to either (i) insufficient representation of a condition in the 

training data or (ii) a pathogenic mechanism not represented in our model. The former may be 

resolved by expanding the data collection and thoughtful data preprocessing. The current iteration of 

P3GPT lacks the ability to assess the similarity of the two conditions. For example, EFO:0000365 

(colorectal adenocarcinoma) and EFO:1001949 (colon adenocarcinoma) are two closely related 

indications, yet important P3GPT genes contained clinical targets only for the former (Table S1). The 

current training procedure does not explicitly convey the ontological distances between diseases, 

compounds, tissues, or cell lines, which likely impedes the propagation of information between 

similar entities.  

Another major limitation imposed on P3GPT by its design is its inability to efficiently handle numeric 

operations. Even the most advanced LLMs are notorious for their poor performance in tasks that are 

not necessarily complex but require precision 
34

. Many authors have proposed ways to improve the 

performance of LLMs in mathematical tasks, e.g., by implementing a step-by-step solution procedure 

or entirely uncoupling numerical values from text token generation 35,36. We are planning to enable 

such approaches in future Precious iterations to enable quantitative analysis using synthesized data. 

Despite these drawbacks, P3GPT’s performance in target identification and other tasks highlights its 

potential as a powerful tool for aging-related research and drug discovery. As a low-level LLM, it has 

the potential to enable the fast-paced, affordable experimentation setting of an in silico lab. In 

tandem with its previous and upcoming iterations, P3GPT can support a variety of complex 

experimental settings. To confirm this claim, we used P3GPT as a source of potential geroprotectors 

to be screened in a cellular senescence model (Table 4).  

P3GPT allows several strategies to identify such compounds, among which we selected the method 

that relies on generating differential gene lists for younger and older adults (Figure 5B). Previous 

works that have used machine learning to identify novel senolytics have reported a 14% (3 out of 21) 

hit rate 
37

. In comparison, 23% of the compounds proposed by P3GPT showed senomorphic activity 

and no cytotoxicity. Due to time and budget constraints, we could allocate only 54 dilutions for a 

total of 22 compounds, resulting in < 3 dilutions per compound. We think that the actual P3GPT hit 

rate in geroprotector discovery could be even higher if a wider range of concentrations was explored.  

For example, XL-888 was recently identified as a senolytic in an in vitro model of lung fibrosis 
38

. This 

senolytic activity is likeliest realized via HSP90 inhibition, a well-documented pathway activated by 

some other senolytics 39. We independently identified XL-888 as a potential senolytic, although all 

four of its dilutions displayed a significant cytotoxic effect in nonsenescent IMR90 cultures 

(Figure4B). However, we also observed that, in lower concentrations, this compound is selectively 

more toxic to senescent cells, and we expect that, at concentrations < 20nM, it will have a negligible 

effect on the non-senescent cells in our in vitro model.  

Other promising compounds selected by P3GPT for this screening include maslinic acid, a natural 

terpenoid found in olives, which has previously been reported to alleviate aging-related disorders in 

muscle and cartilage 40. Here, we report it to be a senomorphic compound that prevents senescent 

cell formation, a mechanism of action through which beneficial effects can be achieved in the elderly.  
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For other identified senomorphics, there is scarce evidence of geroprotective effects in the literature. 

Clomethiazole, for instance, is a sedative reported to have neuroprotective effects in ischemia 
41

. 

Dapsone was previously reported to exert an anti-inflammatory effect by inhibiting reactive oxygen 

species production 42. One compound that demonstrated potential senolytic action in our in vitro 

screening, metronidazole, has been used since the 1950s to treat inflammatory gastrointestinal 

conditions, such as colitis, thanks to its cytotoxic effect on anaerobic bacteria 43. Despite a long 

history of research, the metabolism of metronidazole by human cells is still not fully understood, and 

our findings suggest that this compound may be worthwhile to study outside the antibiotic context 
44.  

While none of the screened compounds was as potent as rapamycin or navitoclax, we see this as a 

technical matter of identifying the optimal dosage. Alternatively, compounds with well-studied 

mechanisms of action, such as XL-888, may be supplemented with other potential geroprotectors to 

achieve a synergistic elimination of senescent cells. While P3GPT is designed to simulate experiments 

with singular compounds, we aim to enable the screening of compound mixtures in future Precious 

iterations.  

In sum, P3GPT is a unique biomedical model, and its development necessitates the creation of a 

whole range of ancillary solutions to leverage the recent advancements in AI technology. The rapid 

rates of LLM releases, biodata repository updates, and research publications pose a considerable 

challenge to benchmarking biomedical LLM performance. Locating and aggregating the latest 

versions of all materials required for validation tests, as well as updating the existing pipelines to 

support disparate data formats, requires substantial effort that is better spent elsewhere. To reduce 

the burden of these routine tasks on P3GPT developers, we sought ways to automate them using AI 

agents.  

AI agents have proven to be instrumental in overcoming common limitations of LLM applications by 

providing them with a toolset to actively seek new information, carry out complex pipelines, and 

reduce the uncertainty inherent to their output. In addition to significantly extending the range of 

LLM use cases, AI agents have the benefit of being mostly agnostic to the models to which they are 

attached, thus enabling painless transfer to newer and more powerful LLMs. Multi-agent systems 

have the potential to greatly increase the throughput of natural and computer science researchers 

without sacrificing precision, as recently demonstrated in ChatMOF, an AI system toolkit that 

manages demanding tasks in materials science 
45

. 

The wider infrastructure that supported P3GPT’s development also featured autonomous AI agents 

to streamline the validation process. We have successfully enabled most tests featured in this 

preprint with the functionality provided by Langchain and CrewAI. As the Precious project and the 

broader AI field continue to mature, we intend to extend the range of functions carried out by AI 

agents. Ultimately, we envision a not-so-distant future in which AI systems manage end-to-end 

research projects in which a Precious-like model occupies a central role (Figure 2).   
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Data & code availability 

P3GPT is publicly available at Insilico Medicine’s Hugging Face repository 

(https://huggingface.co/insilicomedicine): precious3-gpt (multi-omics model trained only on omics 

data) and  precious3-gpt-multi-modal (multi-omics and multi-modal model) 46,47. Limited access to a 

private Hugging Face endpoint is available at Insilico Medicine’s official Discord server 

(https://discord.gg/DMAKp5yM). 

Supplementary materials for this preprint are available as an Open Science Framework repository 

(https://doi.org/10.17605/OSF.IO/QRT3U)  48. 

Methods 

Data collection and processing 

We aggregated omics data from experiments deposited in public repositories (see Table 2 for a full 

list of datasets included in the model’s training). To conform with the P3GPT-enforced prompt 

structure, omics measurements were reduced to lists of differentially expressed genes for RNAseq 

and expression profiling through array experiments, differentially methylated TSS1500 regions for 
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RRBS and methylation profiling through array experiments, or differentially abundant proteins for 

proteome experiments. 

For LINCS, to take one example, we used level-5 data representing DEG signatures as defined by the 

consortium. Only LINCS chemical perturbation experiments were collected for the model’s training. 

We defined resources that did not report results as lists of features differentiating case and control 

cohorts using DESeq2 for expression data 
49

. For methylation data, we used custom scripts to 

calculate the average P-value among all CpG sites observed in an experiment for TSS1500 regions, 

regardless of the platform. 

Data from three species were included in P3GPT’s training: Homo sapiens, Mus musculus, and 

Macaca mulatta. For H. sapiens, we mapped any gene representations encountered onto NCBI gene 

symbols, ignoring transcript variants. Only protein-coding genes were considered, yielding a 

background set of 25,332 unique genes. For M. musculus and M. mulatta, all genes were denoted as 

the gene symbol of their human homolog with the highest similarity, as described on ENSEMBL. 

Genes that lacked human homologs were ignored. 

Human clinical blood tests used in the model’s training included 30 blood biomarkers representing 

red blood cell indices, white blood cell indices, lipid profiles, liver proteins (ALT and AST), total 

bilirubin, serum minerals (calcium, phosphate, potassium, and sodium), and serum protein, albumin, 

and globulin levels. All blood biomarkers were included in the training procedure alongside their 

numeric values after min–max scaling of the original SI units.  

The collected data were eventually formatted as sentences with a strictly defined structure. We 

represented an omics experiment as a row in a table with a predefined set of columns. Distinct 

columns were used for lists of upregulated and downregulated genes alongside species, data type, 

tissue, cell line, gender, chronological age, age group, condition, administered compound, compound 

dose, and duration of exposure.  

Each row in the resulting table was treated as a unique sentence. Missing features were noted as 

explicitly empty in the sentence structure in cases of insufficient annotation in the original source or 

an incompatible experimental design (e.g., chemical perturbation in healthy subjects). An instruction 

was added at the beginning of each sentence to represent the experimental design: chemical omics 

screening (<cpd2diff> and <diff2cpd>), cross-age group observational study (<age2diff> and 

<diff2age>), or case-control condition study (<diff2disease> and <disease2diff>). In some cases, the 

instructions were chained to represent composite designs, e.g., <cpd2diff><disease2diff> for 

experiments in which a compound was applied to cancer cells. Each token, except tags, contained 

one white space at the end to ensure that all values were tokenized correctly.  

The GEO datasets used to train the model included the following: GSE174065, GSE094274, 

GSE069756, GSE174196, GSE163443, GSE111234, GSE146178, GSE051264, GSE096732, GSE131194, 

GSE162817, GSE041637, GSE118438, GSE049379, GSE089148, GSE124709, GSE186969, GSE179330, 

GSE181487, GSE056845, GSE123936, GSE157690, GSE142760, GSE132496, GSE190659, GSE155443, 

GSE159347, GSE193264, GSE078165, GSE017274, GSE112536, GSE151815, GSE108676, GSE144783, 

GSE050781, GSE030352, GSE033588, GSE081382, GSE142585, GSE159214, GSE040499, GSE053260, 

GSE064797, GSE060269, GSE158934, GSE148290, GSE120271, GSE061420, GSE148132, GSE122044, 

GSE038572, GSE163177, GSE070299, GSE156161, GSE029629, GSE030198, GSE179722, GSE086939, 

GSE112537, GSE095736, GSE153082, GSE149758, GSE134707, GSE043520, GSE112535, and 

GSE072879. 
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Model architecture and training 

The two components of the architecture we used are the primary language model and the auxiliary 

modality extension (Figure 1).  

The primary component is based on the MPT architecture, a decoder-only LLaMA-like transformer 

model, which was optimized for efficiency by replacing positional embeddings with a matrix of linear 

biases within the attention layer 29. The model features 32 transformer blocks with 32 self-attention 

heads each, as well as 256-dimension-long token embeddings, amounting to 41 million parameters. 

The number of parameters for P3GPT was selected based on the Chinchilla scaling law, providing a 

ratio of roughly 1:10 to training set tokens 
50

.  

The auxiliary component enriches P3GPT with multimodal data through three-layer feed-forward 

neural networks (modality mappers, MM). MMs take in embeddings from additional modalities—

biomedical texts and KGs—and map them onto the language model’s latent space, effectively fusing 

diverse knowledge sources. For the knowledge graph modality, we used embeddings generated by a 

heterogeneous graph transformer trained on data assembled using the Indra tool 51–53. For 

biomedical text, we utilized embeddings from Open AI’s text-embedding-ada-002 accessed via 

GenePT 54. Each gene’s embedding was averaged across the up- and down-regulated gene lists to 

create representations of gene lists. The training involved optimizing the language modeling 

objective using the AdamW optimizer with a dynamic learning rate, starting at 5e-3 and decaying by 

0.01 after the 6th and 10th epochs, over a total of 15 epochs 
55

. The training was conducted on five 

A6000 GPUs with a batch size of 17. 

Agent-based validation 

In our study, we employed an autonomous agent-based validation pipeline to assess P3GPT’s 

capabilities in various aging-related and biomedical tasks. This pipeline involves multiple stages, each 

designed to procure the necessary data, attach LLMs deposited on Hugging Face, extract entity 

embeddings, and evaluate different aspects of the model’s performance. The pipeline was realized 

using Crew AI and Langchain tools.  

Gene list generation 

The 805 randomly selected chemical perturbations were excluded from the LINCS training subset. 

The prompts for the P3GPT-derived lists used the following structure: 

<disease2diff2disease><compound2diff2compound><tissue>blood </tissue><cell>thp1 

</cell><efo>EFO_0000221 </efo><datatype></datatype><drug>fluconazole </drug><dose>0.125um 

</dose><time>24h </time><case></case><control></control><age></age><species>human 

</species><gender></gender><dataset_type></dataset_type> 

The prompts for the GPT4o-derived lists used the following structure: 

Identify 250 down-regulated genes in breast mcf7 cells isolated from a human with breast 

adenocarcinoma following treatment with brd-k84421793.     Return only genes in list 

separated by comma without numeration, e.g GeneA, GeneB, .... Don't add any comments and 

apologies.    Even if you don't know the answer, suggest the most likely list of genes. 

 

The generated up- and down-regulated lists were truncated to the length of the corresponding level-

5 signatures. The random model was implemented as a random no-replacement sampler over the 

union of roughly 11,000 gene symbols present in the original LINCS holdout set. 
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The performance of the LLMs was measured as the Jaccard similarity of the generated DEGs to the 

original lists of up- and down-regulated genes. The significance of the observed differences in 

similarities between P3GPT, GPT4o, random sampler-derived gene lists and LINCS signatures was 

measured with Mann-Whitney’s U-test. 

P3GPT entities are associated with biological processes 

We manually selected six high-order terms from the three Gene Ontology (accessed on 2024-01-17) 

sections: molecular function, biological process, cell component. The embeddings from P3GPT (N 

dimensions = 365), OpenBioLLM-8B (N dim = 4096), BioGPT-Large (N dim = 1600), Gemma-2B (Ndim = 2048), 

Llama3-8B (Ndim = 4096) were extracted using local instances of these LLMs installed from their 

Hugging Face repositories. For each gene embedding, binary prediction targets were defined as the 

presence of an ontology term in its annotation.  

The embeddings of all genes were submitted to a CatBoost regressor training pipeline with 2000 

iterations to predict whether a gene had a particular term with the following settings. The standard 

deviation of the reported ROC-AUC was measured based on CatBoost performance in five-fold cross-

validation. 

P3GPT-derived aging clocks 

Illumina array DNAm data required for the human aging clocks was prepared following the 

methodology of 56  to obtain the total set of 10,750 samples, from which 2,824 samples were split 

into a validation set. The DNAm features for the reported CatBoost regressor of chronological age 

were selected using SHAP value feature importance scores. Among the 25,332 genes, we selected 

the 360 most important ones to match the length of P3GPT’s embeddings. Then, their ß-values were 

concatenated with the averaged embeddings of the 50 most hypermethylated genes in each sample. 

The predictions for other human aging clocks were obtained from a repository of aging clocks, 

ClockBase 14. The aging clocks from the following publications were used in our comparison: 15–19,57,58. 

618 samples present in our validation set were missing in ClockBase, hence all cross-clock 

comparisons were carried out in a common subset of 2,206 samples. 

A CatBoost regressor was trained with the stacked embeddings of the 50 most methylated gene 

TSS1500 regions.  

For the multi-species aging clocks, we used processed ß-values from GSE223748 GEO dataset. The 

samples of each species were split with a ratio of 8:1 training to test points. The cohorts with <30 

points in the test set were removed. For each cohort, a separate CatBoost regressor was trained 

using the stacked embeddings of the 1000 most methylated gene promoters.  For mapping non-

human CpG sites to human gene symbols, the manifest file for GPL28271 from the original paper was 

used 
59

. The orthologous CpG probes were considered if they occupied TSS200 regions. The signal 

across several CpG sites mapped to the TSS200 region of a single gene was averaged. 

Multimodal target enrichment  

Indication-target linkage was collected by cross-referencing the mechanism of action and recorded 

indications for all  CHEMBL33 compounds (release date: May 2023). The level of clinical approval for 

a compound in the context of an indication was ignored. We selected the indications to be screened 

based on the high (>10) number of known clinical targets and limited our pool to the indications 

affecting the tissues with >1000 observations in the training set. The indications selected for 

screening are listed in Supplementary Table S1. The smallest number of targets was recorded for 
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indication EFO:1001949 (colon adenocarcinoma) — 19 targets. The largest number of targets was 

recorded for MONDO:0007254 (breast cancer) — 194 targets.  

For each indication, P3GPT was launched with prompts of the following format, once for each omics 

domain: 

'[BOS]<disease2diff2disease><tissue>lung </tissue><age></age><cell></cell><efo>EFO_1001818 

</efo><datatype></datatype><drug></drug><dose></dose><time></time><case></case><control></c

ontrol><dataset_type>expression </dataset_type><gender>m </gender><species>human 

</species>' 

The <tissue> tag was set based on the primary tissue associated with the condition, the <gender> tag 

was left blank, unless a condition was strongly associated with only one gender (e.g. prostate of 

ovarian carcinoma). 

For each launch, output token probability was collected to obtain lists of 300 most up- or down-

regulated genes, for a total of 600 genes per an indication-omics generation. We inspected each such 

gene set for enrichment in CHEMBL-derived clinical targets using Fisher’s exact test over a 

contingency table with the total sum of cells equal to 22,509. See Supplementary Table ZXZ for the 

detected P-values and lists of genes included in P3GPT lists of most likely output tokens in each 

launch. 

P3GPT-derived geroprotectors 

P3GPT-mediated geroprotector generation 

The geroprotector generation experiment was conducted using P3GPT models in a two-phase 

process: 

1. Gene Expression Profiling: 

Initially, Precious3GPT models were employed to generate lists of up-regulated and down-

regulated genes for human lung tissue at the expression level. This was accomplished using 

the <age2diff> instruction protocol and specifying the case-control generation conditions as 

older adults (70-80 years) and younger adults (20-30 years), respectively; 

2. Compound Identification: 

Subsequently, the gene lists produced in Phase-1 were utilized as input for the P3GPT 

models' <diff2compound> instruction. To induce a reversal of the age-related gene 

expression signature, the up-regulated and down-regulated gene lists were interchanged 

prior to input. The IMR90 cell line, which served as the experimental model for in vitro 

studies, was specified as an additional parameter in the model input for this phase. 

This two-step approach facilitated the identification of potential geroprotective compounds that 

could theoretically counteract age-associated gene expression changes in human lung tissue. On 

manual review, addictive, highly toxic, and commercially unavailable compounds were removed from 

consideration, resulting in a list of 22 compounds to be screened in an in vitro IMR90 model of 

induced senescence. 

Cell culture 

Normal human lung fibroblast cell line IMR-90 was obtained from ATCC and cultured in MEM 

medium (Procell, cat# PM150411) supplemented with 10% fetal bovine serum (Gibco, cat# 

A5669701), 1% Non-Essential Amino Acids (Gibco, cat# 11140050), 1mM Sodium Pyruvate (Gibco, 

cat# 11360070) and 1% penicillin-streptomycin (P/S, Gibco, cat# 15140122). The cell line was 

routinely tested for mycoplasma contamination (Lonza, cat# LT07-710) and authenticated with short 

tandem repeat (STR) assays.  
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Materials 

All tested compounds were purchased from Medchemexpress (MCE) and dissolved in dimethyl 

sulfoxide (DMSO, Solarbio, cat# D8371). MCE catalog numbers for all compounds used in the 

screening are available in Supplementary Table S2.  

siβPIX senescence model induction  

IMR-90 cell suspensions were seeded in 96-well plates at a final cell number of 2000 per well and 

transfected two siRNAs for βPIX gene (sißPIX; sense strand: GAAGUUAAGUUCAGCAAACAU, antisense 

strand: AUGUUUGCUGAACUUAACUUC) and non-targeting control (siNC; sense strand: 

CGUACGCGGAAUACUUCGAUU, antisense strand: AAUCGAAGUAUUCCGCGUACG) with RNAi duplex-

Lipofectamine™ RNAiMAX Kit (ThermoFisher, cat 13778150) for 24 hours at 37°C, 5 % CO2. After 24 

hours of incubation, the medium containing siRNA was replaced with a fresh medium containing 

diluted compounds with concentrations indicated in the figures. The treatment duration was 72 

hours. Three replicates per treatment condition were performed. All siRNAs were purchased from 

GENScript and used at a final concentration of 10 nM. 

Senescence-associated beta-galactosidase (SA-β-gal) staining  

After compound treatment, SA-β-gal staining was performed using the SA-β-gal staining kit according 

to the manufacturer’s protocol (Beyotime, cat# C0602). Briefly, cells were fixed using 100μL fixation 

buffer and incubated for 15 mins at room temperature (RT), then washed twice with 100μL PBS for 3 

mins at RT and final aspiration. Subsequently, 100μL of staining solution was added to each well; 

plates were incubated overnight in a CO2-free incubator at 37°C. The next day, the staining solution 

was aspirated, and cells were washed with 100μL PBS. Then, 100μL of 4μg/mL Hoechst solution was 

added to each well, incubated for 15 mins at RT, and washed twice with PBS. The plates were sealed 

and scanned using ArrayScan High-Content Screening System (Thermo Fisher Scientific, CX7 LZR) in 5 

channels (DAPI: Ex405/Em446/37; SA-β-gal: 590(Amber)-Brightfield, 617(Red)-Brightfield, 447(Blue)-

Brightfield, 530(Green)-Brightfield) with 25 fields per well and 10×magnification (binning 2×2, 

1104×1104). The size of each field is 885.54 × 885.54 μm.  

Statistical analysis 

Senolytic, senomorphic, and cytotoxic potentials were formally defined using the total and ßGal 

positive cell counts recorded during chemical screening. 

Senolytic action � 100% � ����,ß���  
  ����,���
������,���
��

 

����������� action �  �100% � �����,ß�������,ß���

� �����,ß��������,ß���

� , �! " � 1
0, �! " � 0 # 

$%&�&�'�� action � 100% �  ����,���
�� � �����,���
�������,���
��

 

, where 

" �  ( 1, �! ����,ß��� ) �����,ß���  0 , �! ����,ß��� * �����,ß���  

# 
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, and where Ti,j is the total cell count in the plate wells exposed to compound i and transfected with 

siRNA j, and similarly,  Si,j is the ßGal-positive cell count. 

All the aforementioned values were calculated in replicates of three for each dilution of the screened 

compounds. The statistical significance of non-zero action coefficients was assessed with Mann-

Whithey’s U-test. 

Effectively, the senolytic action of a compound represents the drop in cell survival when senescence 

is induced. The senomorphic action represents the decrease in the relative number of senescent cells 

in response to compound exposure. The senomorphic test also requires that a compound does not 

decrease the total cell count in the ßPIX siRNA-treated cultures, which would imply cytotoxicity 

and/or senolytic action. The cytotoxic action of a compound represents the decrease in cell survival 

when senescence is not induced. 

Table 5 reports only the dilutions with the highest achieved senolytic or senomorphic action in a 

compound. See Supplementary Tables S3-6 for all compounds and dilutions tested 

Manuscript drafting 

The initial draft of this text was generated using Science42: DORA (Draft Outline Research Assistant), 

an AI multiagent system developed by Insilico Medicine for document generation. Each agent uses 

Retrieval-Augmented Generation (RAG) for data collection, analysis, and fact-checking. 

This LLM-based assistant is designed to streamline the process of creating publications, making it 

faster and simpler. The document generation process is managed by autonomous AI agents 

integrated with curated databases. 
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